CSAPP Lab:Shell Lab
本文最后更新于 461 天前,内容如有失效请评论区留言。

[toc]

过年很常时间没有开 lab 了,这个 lab 做了两天(不包括写文档),第一天就是读文档和测试各种 demo,第二天前半天也是测试各种 demo,晚上才把 lab 写完。大概这就是做这个 lab 的体验吧。

做这个 lab 的时候 CSAPP 下载 lab 材料的网站还炸了,一度以为是不开放了再也上不去了

Shell Lab 介绍

Shell Lab 要求实现一个带有作业控制的 Unix Shell 程序,需要考虑基础的并发,进程控制以及信号和信号处理。做这个实验之前一定要将 CSAPP 的第八章(异常控制流)仔细研读。

? shlab-handout.tar

? shlab.pdf

执行下面的命令,开启 shell lab 之旅

tar xvf shlab-handout.tar
cd shlab-handout/
make

image-20230117100314256

接下来我花了一上午的时间来研读文档,了解实验的要求

Demo 与猜想

读完文档后,就开始尝试通过写代码来印证各种猜想。

首先需要注意区分进程的停止(stopped)和终止(terminated) 状态,其实停止这个词翻译得不太好,暂停表达的意思更合理,所以后文如果提到暂停或者 stopped 都表示停止(stopped)状态。

WNOHANG 与 WUNTRACED

WNOHANGWUNTRACED 信号的区别(CSAPP上关于 WUNTRACED 的解释有点难理解它想表达的意思)

image-20230117152944924

上面这个回答还比较正确,我也经过多次实验验证,WUNTRACED 参数下遇到等待集合中的一个子进程停止或终止状态就会返回。(有一些博客上说 WUNTRACED 是遇到停止但没有终止才会返回,这是错误的)

promask2.c 和 sigsuspend.c 的理解

这是书上的两个关于信号部分比较重要且值得理解的示例程序

  • promask2.c 在 P543,核心就是fork() 之前需要阻塞 SIGCHLD,然后做完 addjob(pid) 等创建子进程后需要做的有关的操作完成后,再解除阻塞 SIGCHLD
  • sigsuspend.c 在 P546,核心就是讲了显示地等待信号的正确方法,先将需要等待地信号屏蔽,然后使用 sigsuspend 让进程进入休眠状态,直到信号到达触发 handler,在 handler 中完成信号到达后应该做的任务,从 handler 返回之后程序苏醒继续运行,再解除信号屏蔽。(关于 sigsuspend 见书或上一篇文章)

pause 的第一个坑

#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <stdio.h>

int main() {
    printf("Hello\n");
    pause();
    printf("After pause\n");
    return 0;
}

如上面的代码,在终端发送 SIGCONT 信号,没有反应

image-20230117164236421

如果想达到期望的效果,代码应该这样写:

#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <stdio.h>

void sigcont_handler(int sig) {

}

int main() {
    signal(SIGCONT, sigcont_handler); 
    printf("Hello\n");
    pause();
    printf("After pause\n");
    return 0;
}

原因是这个,pause 返回当且仅当一个信号到达且从信号处理函数返回

image-20230117234939305

image-20230117164635089

僵尸进程的猜想验证

如下的情况为什么是仅有 2 个僵尸进程,而不是 3 个呢 ?

image-20230117170112326

image-20230117170725197

可以通过 printf("pid1 = %d pid2 = %d\n", pid1, pid2); 来验证,

image-20230117171427711

void sigcont_handler(int sig) {

}

int main() {
    int pid1 = fork();
    int pid2 = fork();
    signal(SIGCONT, sigcont_handler);
    printf("pid1 = %d  pid2 = %d\n", pid1, pid2);
    printf("Hello\n");
    if(pid1 && pid2) {
        pause();
    }
    return 0;
}

回收进程的 demo

下面是一个使用 sigsuspend 回收僵尸进程的实验

#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>

volatile sig_atomic_t pid, Cnt;

void sigchld_handler(int sig) {
    int olderrno = errno, status;
    while((pid = waitpid(-1, &status, 0)) > 0)
        printf("Reaped pid = %d\n", pid), ++Cnt;
    errno = olderrno;
}

int main() {
    pid_t pid;
    sigset_t mask, prev;

    signal(SIGCHLD, sigchld_handler);
    sigemptyset(&mask);
    sigaddset(&mask, SIGCHLD);
    sigprocmask(SIG_BLOCK, &mask, &prev);

    for(int i = 1; i <= 4; ++i)
        if((pid = fork()) == 0) {
            //子进程
            sigprocmask(SIG_SETMASK, &prev, NULL);
            printf("child process %d\n", getpid());
            sleep(getpid() % 5 + 1);
            _exit(0);
        }
    while(Cnt < 4)
        sigsuspend(&prev);
    sigprocmask(SIG_SETMASK, &prev, NULL);
    return 0;
}

image-20230117233230940

waitpid 会浪费 CPU 资源吗

下面是 ChatGPT 的回答,

image-20230118110105967

image-20230118110320375

我也经过多次实验证明,waitpid 阻塞的过程中,进程处于 可中断睡眠状态(S),和 pause 的效果是一样的,不会浪费 CPU 资源

pause 的第二个坑 与 Linux 进程状态

下图是当时遇到的一个问题,

image-20230118114203869

这是一个值得注意的坑, pause() 不会将进程变成 stopped 状态,而是变成可中断的睡眠状态(S),T 才代表暂停或跟踪状态,具体见 Linux进程状态说明

R (task_running) : 可执行状态
S (task_interruptible): 可中断的睡眠状态
D (task_uninterruptible): 不可中断的睡眠状态
T(task_stopped or task_traced):暂停状态或跟踪状态
Z (task_dead - exit_zombie):退出状态,进程成为僵尸进程
X (task_dead - exit_dead):退出状态,进程即将被销毁

下面这样就达到了想要的结果了,成功测试了 WUNTRACED 这个可选参数,当然 WNOHANG 我也测试过了

image-20230118191706812

遗留的 waitpid 的困惑与猜想

我写了 3 个 waitpid{1-3}.c ,这里就懒得放出来了,大致总结出两个猜想:

  • waitpid 返回值为 0 的话 status 的结果是不可信的(对应 waitpid1.c,waitpid2.c

  • waitpid 只在子进程状态改变时才能正常返回,返回的结果才有效,或者说对同一子进程调用两次 waitpid 可能会出问题(waitpid3.c 是两次对一个已经 stopped 进程调用 waitpid,选项为 WUNTRACED,按理说 WUNTRACED 选项的情况下遇到 stopped 进程是什么都没做吧,也不会回收它,但第二次调用它就阻塞了)

代码实现

在进行了诸多猜想验证和 demo 实验后,那么完成这个 shell lab 问题不是太大了。但写的时候还发现了一个新知识:

/*

sigchld_handler – The kernel sends a SIGCHLD to the shell whenever a child job terminates (becomes a zombie), or stops because it received a SIGSTOP or SIGTSTP signal. The handler reaps all available zombie children, but doesn’t wait for any other currently running children to terminate.
*/

从 lab 上的注释中我发现了 CSAPP 上一个漏讲的东西,就是在子进程收到 SIGSTOP 等停止相关的信号时也会向父进程发送 SIGCHLD

此外写代码的时候还有一个很烦的就是得多次查看文档要求,因为要求实在太多了,容易漏掉?

下面直接上最后的代码:

/* 
 * tsh - A tiny shell program with job control
 * 
 * <Put your name and login ID here>
 */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>

/* Misc manifest constants */
#define MAXLINE    1024   /* max line size */
#define MAXARGS     128   /* max args on a command line */
#define MAXJOBS      16   /* max jobs at any point in time */
#define MAXJID    1<<16   /* max job ID */

/* Job states */
#define UNDEF 0 /* undefined */
#define FG 1    /* running in foreground */
#define BG 2    /* running in background */
#define ST 3    /* stopped */

/* 
 * Jobs states: FG (foreground), BG (background), ST (stopped)
 * Job state transitions and enabling actions:
 *     FG -> ST  : ctrl-z
 *     ST -> FG  : fg command
 *     ST -> BG  : bg command
 *     BG -> FG  : fg command
 * At most 1 job can be in the FG state.
 */

/* Global variables */
extern char **environ;      /* defined in libc */
char prompt[] = "tsh> ";    /* command line prompt (DO NOT CHANGE) */
int verbose = 0;            /* if true, print additional output */
int nextjid = 1;            /* next job ID to allocate */
char sbuf[MAXLINE];         /* for composing sprintf messages */

struct job_t {              /* The job struct */
    pid_t pid;              /* job PID */
    int jid;                /* job ID [1, 2, ...] */
    int state;              /* UNDEF, BG, FG, or ST */
    char cmdline[MAXLINE];  /* command line */
};
struct job_t jobs[MAXJOBS]; /* The job list */
/* End global variables */


/* Function prototypes */

/* Here are the functions that you will implement */
void eval(char *cmdline);
int builtin_cmd(char **argv);
void do_bgfg(char **argv);
void waitfg(pid_t pid);

void sigchld_handler(int sig);
void sigtstp_handler(int sig);
void sigint_handler(int sig);

/* Here are helper routines that we've provided for you */
int parseline(const char *cmdline, char **argv); 
void sigquit_handler(int sig);

void clearjob(struct job_t *job);
void initjobs(struct job_t *jobs);
int maxjid(struct job_t *jobs); 
int addjob(struct job_t *jobs, pid_t pid, int state, char *cmdline);
int deletejob(struct job_t *jobs, pid_t pid); 
pid_t fgpid(struct job_t *jobs);
struct job_t *getjobpid(struct job_t *jobs, pid_t pid);
struct job_t *getjobjid(struct job_t *jobs, int jid); 
int pid2jid(pid_t pid); 
void listjobs(struct job_t *jobs);

void usage(void);
void unix_error(char *msg);
void app_error(char *msg);
typedef void handler_t(int);
handler_t *Signal(int signum, handler_t *handler);

/*
 * main - The shell's main routine 
 */
int main(int argc, char **argv) 
{
    char c;
    char cmdline[MAXLINE];
    int emit_prompt = 1; /* emit prompt (default) */

    /* Redirect stderr to stdout (so that driver will get all output
     * on the pipe connected to stdout) */
    dup2(1, 2);

    /* Parse the command line */
    while ((c = getopt(argc, argv, "hvp")) != EOF) {
        switch (c) {
        case 'h':             /* print help message */
            usage();
        break;
        case 'v':             /* emit additional diagnostic info */
            verbose = 1;
        break;
        case 'p':             /* don't print a prompt */
            emit_prompt = 0;  /* handy for automatic testing */
        break;
    default:
            usage();
    }
    }

    /* Install the signal handlers */

    /* These are the ones you will need to implement */
    Signal(SIGINT,  sigint_handler);   /* ctrl-c */
    Signal(SIGTSTP, sigtstp_handler);  /* ctrl-z */
    Signal(SIGCHLD, sigchld_handler);  /* Terminated or stopped child */

    /* This one provides a clean way to kill the shell */
    Signal(SIGQUIT, sigquit_handler); 

    /* Initialize the job list */
    initjobs(jobs);

    /* Execute the shell's read/eval loop */
    while (1) {

    /* Read command line */
    if (emit_prompt) {
        printf("%s", prompt);
        fflush(stdout);
    }
    if ((fgets(cmdline, MAXLINE, stdin) == NULL) && ferror(stdin))
        app_error("fgets error");
    if (feof(stdin)) { /* End of file (ctrl-d) */
        fflush(stdout);
        exit(0);
    }

    /* Evaluate the command line */
    eval(cmdline);
    fflush(stdout);
    fflush(stdout);
    } 

    exit(0); /* control never reaches here */
}

/* 
 * eval - Evaluate the command line that the user has just typed in
 * 
 * If the user has requested a built-in command (quit, jobs, bg or fg)
 * then execute it immediately. Otherwise, fork a child process and
 * run the job in the context of the child. If the job is running in
 * the foreground, wait for it to terminate and then return.  Note:
 * each child process must have a unique process group ID so that our
 * background children don't receive SIGINT (SIGTSTP) from the kernel
 * when we type ctrl-c (ctrl-z) at the keyboard.  
*/
void eval(char *cmdline) 
{
    char buf[MAXLINE];
    char *argv[MAXARGS];
    int bg;
    pid_t pid;
    sigset_t mask, prev, mask_all;

    strcpy(buf, cmdline);
    bg = parseline(buf, argv);
    if(argv[0] == NULL) return;
    int is_builtin_cmd = builtin_cmd(argv);
    if(is_builtin_cmd) return; //在当前进程中执行内置命令

    //fork之前先 block SIGCHLD
    sigemptyset(&mask);
    sigaddset(&mask, SIGCHLD);
    sigfillset(&mask_all);
    sigprocmask(SIG_BLOCK, &mask, &prev);

    //fork一个新进程执行非内置命令
    if((pid = fork()) == 0) {
        setpgid(0, 0); //将子进程的进程组ID改成子进程ID
        sigprocmask(SIG_SETMASK, &prev, NULL);
        if(execve(argv[0], argv, environ) < 0) {
            printf("%s: Command not found\n", argv[0]);
            exit(0);
        }
    }
    sigprocmask(SIG_BLOCK, &mask_all, NULL); //访问全局数据结构前阻塞所有信号
    addjob(jobs, pid, (bg ? BG : FG), cmdline);
    sigprocmask(SIG_SETMASK, &prev, NULL);
    if(bg) printf("[%d] (%d) %s",pid2jid(pid), pid, cmdline);
    else waitfg(pid);
    return;
}

/* 
 * parseline - Parse the command line and build the argv array.
 * 
 * Characters enclosed in single quotes are treated as a single
 * argument.  Return true if the user has requested a BG job, false if
 * the user has requested a FG job.  
 */
int parseline(const char *cmdline, char **argv) 
{
    static char array[MAXLINE]; /* holds local copy of command line */
    char *buf = array;          /* ptr that traverses command line */
    char *delim;                /* points to first space delimiter */
    int argc;                   /* number of args */
    int bg;                     /* background job? */

    strcpy(buf, cmdline);
    buf[strlen(buf)-1] = ' ';  /* replace trailing '\n' with space */
    while (*buf && (*buf == ' ')) /* ignore leading spaces */
    buf++;

    /* Build the argv list */
    argc = 0;
    if (*buf == '\'') {
    buf++;
    delim = strchr(buf, '\'');
    }
    else {
    delim = strchr(buf, ' ');
    }

    while (delim) {
    argv[argc++] = buf;
    *delim = '\0';
    buf = delim + 1;
    while (*buf && (*buf == ' ')) /* ignore spaces */
           buf++;

    if (*buf == '\'') {
        buf++;
        delim = strchr(buf, '\'');
    }
    else {
        delim = strchr(buf, ' ');
    }
    }
    argv[argc] = NULL;

    if (argc == 0)  /* ignore blank line */
    return 1;

    /* should the job run in the background? */
    if ((bg = (*argv[argc-1] == '&')) != 0) {
    argv[--argc] = NULL;
    }
    return bg;
}

/* 
 * builtin_cmd - If the user has typed a built-in command then execute
 *    it immediately.  
 */
int builtin_cmd(char **argv) 
{
    if(!strcmp(argv[0], "quit")) exit(0);
    if(!strcmp(argv[0], "fg") || !strcmp(argv[0], "bg")) {
        do_bgfg(argv);
        return 1;
    }
    if(!strcmp(argv[0], "jobs")) {
        listjobs(jobs);
        return 1;
    }
    return 0;     /* not a builtin command */
}

/* 
 * do_bgfg - Execute the builtin bg and fg commands
 */
void do_bgfg(char **argv) 
{
    pid_t pid = 0;
    int jid = 0, bg = 0;
    struct job_t *job;
    sigset_t mask_all, prev;

    sigfillset(&mask_all);
    sigprocmask(SIG_BLOCK, &mask_all, &prev);
    if(argv[1] == NULL) {
        printf("%s command requires PID or %%jobid argument\n", argv[0]);
        goto END;
    }
    if(argv[1][0] == '%') {
        sscanf(&argv[1][1], "%d", &jid);
        job = getjobjid(jobs, jid);
        if(job == NULL) {
            printf("%%%d: No such job\n", jid);
            goto END;
        }
    } else
    if(isdigit(argv[1][0]))  {
        sscanf(&argv[1][0], "%d", &pid);
        job = getjobpid(jobs, pid);
        if(job == NULL) {
            printf("(%d): No such process\n", pid);
            goto END;
        }
    } else {
        printf("%s: argument must be a PID or %%jobid\n", argv[0]);
        goto END;
    }
    if(!strcmp(argv[0], "bg")) bg = 1;
    kill(-job->pid, SIGCONT);
    job->state = (bg ? BG : FG);
    sigprocmask(SIG_SETMASK, &prev, NULL); //调用waitfg之前解除信号屏蔽
    if(bg) printf("[%d] (%d) %s",job->jid, job->pid, job->cmdline);
    else waitfg(pid);
    return;

    END:
    sigprocmask(SIG_SETMASK, &prev, NULL);
    return;
}

/* 
 * waitfg - Block until process pid is no longer the foreground process
 */
void waitfg(pid_t pid)
{
    // int status;
    // waitpid(pid, &status, 0); //感觉返回值是啥都行,没有必要检查
    sigset_t mask, prev;
    sigemptyset(&mask);
    sigaddset(&mask, SIGCHLD);
    sigprocmask(SIG_BLOCK, &mask, &prev);

    while(fgpid(jobs) > 0)
        sigsuspend(&prev);

    sigprocmask(SIG_SETMASK, &prev, NULL);
    return;
}

/*****************
 * Signal handlers
 *****************/

/* 
 * sigchld_handler - The kernel sends a SIGCHLD to the shell whenever
 *     a child job terminates (becomes a zombie), or stops because it
 *     received a SIGSTOP or SIGTSTP signal. The handler reaps all
 *     available zombie children, but doesn't wait for any other
 *     currently running children to terminate.  
 */
void sigchld_handler(int sig) 
{
    int olderrno = errno, status;
    sigset_t mask_all, prev;
    pid_t pid;
    struct job_t *job;

    sigfillset(&mask_all);
    while((pid = waitpid(-1, &status, WNOHANG | WUNTRACED)) > 0) {
        sigprocmask(SIG_BLOCK, &mask_all, &prev); //阻塞所有信号,保护对共享全局数据结构的访问
        if(WIFEXITED(status)) {
            deletejob(jobs, pid);
        }
        if(WIFSIGNALED(status)) {
            printf ("Job [%d] (%d) terminated by signal %d\n", pid2jid(pid), pid, WTERMSIG(status));
            deletejob(jobs, pid);
        }
        if(WIFSTOPPED(status)) {
            job = getjobpid(jobs, pid);
            job->state = ST;
            printf ("Job [%d] (%d) stoped by signal %d\n", pid2jid(pid), pid, WSTOPSIG(status));
        }
        sigprocmask(SIG_SETMASK, &prev, NULL);
    }
    errno = olderrno;
    return;
}

/* 
 * sigint_handler - The kernel sends a SIGINT to the shell whenver the
 *    user types ctrl-c at the keyboard.  Catch it and send it along
 *    to the foreground job.  
 */
void sigint_handler(int sig) 
{
    int olderrno = errno;
    sigset_t mask_all, prev;
    pid_t pid;

    sigfillset(&mask_all);
    sigprocmask(SIG_BLOCK, &mask_all, &prev);
    if((pid = fgpid(jobs)) > 0) {
        kill(-pid, SIGINT); //发给整个进程组,为因子进程可能fork了新进程,新进程和子进程都属于子进程的进程组
    }
    sigprocmask(SIG_SETMASK, &prev, NULL);
    errno = olderrno;
    return;
}

/*
 * sigtstp_handler - The kernel sends a SIGTSTP to the shell whenever
 *     the user types ctrl-z at the keyboard. Catch it and suspend the
 *     foreground job by sending it a SIGTSTP.  
 */
void sigtstp_handler(int sig) 
{
    int olderrno = errno;
    sigset_t mask_all, prev;
    pid_t pid;
    // struct job_t *job;

    sigfillset(&mask_all);
    sigprocmask(SIG_BLOCK, &mask_all, &prev);
    if((pid = fgpid(jobs)) > 0) {
        kill(-pid, SIGTSTP); //发给整个进程组,因为子进程可能fork了新进程,新进程和子进程都属于子进程的进程组
        //下面可以省略,因为子进程收到SIGTSTP后kernel会给父进程发SIGCHLD,父进程在sigchld_handler完成了下面的修改
        // job = getjobpid(jobs, pid);
        // job->state = ST; 
    }
    sigprocmask(SIG_SETMASK, &prev, NULL);
    errno = olderrno;
    return;
}

/*********************
 * End signal handlers
 *********************/

/***********************************************
 * Helper routines that manipulate the job list
 **********************************************/

/* clearjob - Clear the entries in a job struct */
void clearjob(struct job_t *job) {
    job->pid = 0;
    job->jid = 0;
    job->state = UNDEF;
    job->cmdline[0] = '\0';
}

/* initjobs - Initialize the job list */
void initjobs(struct job_t *jobs) {
    int i;

    for (i = 0; i < MAXJOBS; i++)
    clearjob(&jobs[i]);
}

/* maxjid - Returns largest allocated job ID */
int maxjid(struct job_t *jobs) 
{
    int i, max=0;

    for (i = 0; i < MAXJOBS; i++)
    if (jobs[i].jid > max)
        max = jobs[i].jid;
    return max;
}

/* addjob - Add a job to the job list */
int addjob(struct job_t *jobs, pid_t pid, int state, char *cmdline) 
{
    int i;

    if (pid < 1)
    return 0;

    for (i = 0; i < MAXJOBS; i++) {
    if (jobs[i].pid == 0) {
        jobs[i].pid = pid;
        jobs[i].state = state;
        jobs[i].jid = nextjid++;
        if (nextjid > MAXJOBS)
        nextjid = 1;
        strcpy(jobs[i].cmdline, cmdline);
        if(verbose){
            printf("Added job [%d] %d %s\n", jobs[i].jid, jobs[i].pid, jobs[i].cmdline);
            }
            return 1;
    }
    }
    printf("Tried to create too many jobs\n");
    return 0;
}

/* deletejob - Delete a job whose PID=pid from the job list */
int deletejob(struct job_t *jobs, pid_t pid) 
{
    int i;

    if (pid < 1)
    return 0;

    for (i = 0; i < MAXJOBS; i++) {
    if (jobs[i].pid == pid) {
        clearjob(&jobs[i]);
        nextjid = maxjid(jobs)+1;
        return 1;
    }
    }
    return 0;
}

/* fgpid - Return PID of current foreground job, 0 if no such job */
pid_t fgpid(struct job_t *jobs) {
    int i;

    for (i = 0; i < MAXJOBS; i++)
    if (jobs[i].state == FG)
        return jobs[i].pid;
    return 0;
}

/* getjobpid  - Find a job (by PID) on the job list */
struct job_t *getjobpid(struct job_t *jobs, pid_t pid) {
    int i;

    if (pid < 1)
    return NULL;
    for (i = 0; i < MAXJOBS; i++)
    if (jobs[i].pid == pid)
        return &jobs[i];
    return NULL;
}

/* getjobjid  - Find a job (by JID) on the job list */
struct job_t *getjobjid(struct job_t *jobs, int jid) 
{
    int i;

    if (jid < 1)
    return NULL;
    for (i = 0; i < MAXJOBS; i++)
    if (jobs[i].jid == jid)
        return &jobs[i];
    return NULL;
}

/* pid2jid - Map process ID to job ID */
int pid2jid(pid_t pid) 
{
    int i;

    if (pid < 1)
    return 0;
    for (i = 0; i < MAXJOBS; i++)
    if (jobs[i].pid == pid) {
            return jobs[i].jid;
        }
    return 0;
}

/* listjobs - Print the job list */
void listjobs(struct job_t *jobs) 
{
    int i;

    for (i = 0; i < MAXJOBS; i++) {
    if (jobs[i].pid != 0) {
        printf("[%d] (%d) ", jobs[i].jid, jobs[i].pid);
        switch (jobs[i].state) {
        case BG: 
            printf("Running ");
            break;
        case FG: 
            printf("Foreground ");
            break;
        case ST: 
            printf("Stopped ");
            break;
        default:
            printf("listjobs: Internal error: job[%d].state=%d ", 
               i, jobs[i].state);
        }
        printf("%s", jobs[i].cmdline);
    }
    }
}
/******************************
 * end job list helper routines
 ******************************/


/***********************
 * Other helper routines
 ***********************/

/*
 * usage - print a help message
 */
void usage(void) 
{
    printf("Usage: shell [-hvp]\n");
    printf("   -h   print this message\n");
    printf("   -v   print additional diagnostic information\n");
    printf("   -p   do not emit a command prompt\n");
    exit(1);
}

/*
 * unix_error - unix-style error routine
 */
void unix_error(char *msg)
{
    fprintf(stdout, "%s: %s\n", msg, strerror(errno));
    exit(1);
}

/*
 * app_error - application-style error routine
 */
void app_error(char *msg)
{
    fprintf(stdout, "%s\n", msg);
    exit(1);
}

/*
 * Signal - wrapper for the sigaction function
 */
handler_t *Signal(int signum, handler_t *handler) 
{
    struct sigaction action, old_action;

    action.sa_handler = handler;  
    sigemptyset(&action.sa_mask); /* block sigs of type being handled */
    action.sa_flags = SA_RESTART; /* restart syscalls if possible */

    if (sigaction(signum, &action, &old_action) < 0)
    unix_error("Signal error");
    return (old_action.sa_handler);
}

/*
 * sigquit_handler - The driver program can gracefully terminate the
 *    child shell by sending it a SIGQUIT signal.
 */
void sigquit_handler(int sig) 
{
    printf("Terminating after receipt of SIGQUIT signal\n");
    exit(1);
}




测试

image-20230118235718027

image-20230118235927382

image-20230119000044103

image-20230119000340607

image-20230119000451043

image-20230119001126980

image-20230119001213022

image-20230119001252592

总结

  • 通过学习 Linux 信号以及信号程序编写后,我不再能像以前那样能够自信地确保程序的正确性,任何时候都可能插入一个中断,插入一个信号处理,使得编写程序的时候得格外小心,我也没有什么异步程序编写经验,还需要更多地学习和练习
  • 上面的程序一些不足的地方,比如没有使用包装函数(wrapper),可以像 CSAPP 那样为那些系统函数写个包装函数,不过我懒得写了。还有包括在信号处理程序中使用了 printf 异步不安全函数。还有在对共享全局数据结构访问的时候需要阻塞所有信号,我在很多处都这样做了,但还有少数地方我没有这样做。这也看出使用全局变量真是麻烦,最好在信号处理程序中少用吧
  • 这次 lab 的测试程序竟然没有实现自动化测试,还得一个一个人工比对。这或许也是因为信号处理程序的错误很难发现和复现。

Reference

CSAPP-Lab07 Shell Lab 深入解析

Linux进程状态说明

pause(3p) — Linux manual page

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇